Format

Send to

Choose Destination
Genes Dev. 2009 Jan 1;23(1):1-11. doi: 10.1101/gad.1735809.

Making synaptic plasticity and memory last: mechanisms of translational regulation.

Author information

1
Program in Molecular Medicine University of Massachusetts Medical School Worcester, Massachusetts 01605, USA. joel.richter@umassmed.edu

Abstract

Synaptic transmission in neurons is a measure of communication at synapses, the points of contact between axons and dendrites. The magnitude of synaptic transmission is a reflection of the strength of these synaptic connections, which in turn can be altered by the frequency with which the synapses are stimulated, the arrival of stimuli from other neurons in the appropriate temporal window, and by neurotrophic factors and neuromodulators. The ability of synapses to undergo lasting biochemical and morphological changes in response to these types of stimuli and neuromodulators is known as synaptic plasticity, which likely forms the cellular basis for learning and memory, although the relationship between any one form synaptic plasticity and a particular type of memory is unclear. RNA metabolism, particularly translational control at or near the synapse, is one process that controls long-lasting synaptic plasticity and, by extension, several types of memory formation and consolidation. Here, we review recent studies that reflect the importance and challenges of investigating the role of mRNA translation in synaptic plasticity and memory formation.

PMID:
19136621
DOI:
10.1101/gad.1735809
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center