Send to

Choose Destination
See comment in PubMed Commons below
J Antibiot (Tokyo). 2009 Jan;62(1):17-26. doi: 10.1038/ja.2008.4. Epub 2009 Jan 9.

Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine.

Author information

  • 1Laboratory of Natural Product Organic Chemistry, Center for Basic Research, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan.


Staurosporine was discovered at the Kitasato Institute in 1977 while screening for microbial alkaloids using chemical detection methods. It was during the same era that protein kinase C was discovered and oncogene v-src was shown to have protein kinase activity. Staurosporine was first isolated from a culture of Actinomyces that originated in a soil sample collected in Mizusawa City, Japan. Thereafter, indolocarbazole compounds have been isolated from a variety of organisms. The biosynthesis of staurosporine and related indolocarbazoles was finally elucidated during the past decade through genetic and biochemical studies. Subsequently, several novel indolocarbazoles have been produced using combinatorial biosynthesis. In 1986, 9 years since its discovery, staurosporine and related indolocarbazoles were shown to be nanomolar inhibitors of protein kinases. They can thus be viewed as forerunners of today's crop of novel anticancer drugs. The finding led many pharmaceutical companies to search for selective protein kinase inhibitors by screening natural products and through chemical synthesis. In the 1990s, imatinib, a Bcr-Abl tyrosine kinase inhibitor, was synthesized and, following human clinical trials for chronic myelogenous leukemia, it was approved for use in the USA in 2001. In 1992, mammalian topoisomerases were shown to be targets for indolocarbazoles. This opened up new possibilities in that indolocarbazole compounds could selectively interact with ATP-binding sites of not only protein kinases but also other proteins that had slight differences in ATP-binding sites. ABCG2, an ATP-binding cassette transporter, was recently identified as an important new target for indolocarbazoles.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center