Send to

Choose Destination
J Nat Prod. 2009 Jan;72(1):87-91. doi: 10.1021/np800647v.

Biotransformation of two ent-Pimara-9(11),15-diene derivatives by Gibberella fujikuroi.

Author information

Instituto de Productos Naturales y AgrobiologĂ­a, CSIC, P.O. Box 195, 38206-La Laguna, Tenerife, Canary Islands, Spain.


The incubation of 19-hydroxy-13-epi-ent-pimara-9(11),15-diene (4) with Gibberella fujikuroi gave 8 alpha,19-dihydroxy-9 alpha,11alpha-epoxy-13-epi-ent-pimara-15-ene (6), 7-oxo-11 alpha,19-dihydroxy-13-epi-ent-pimara-8(9),15-diene (7), 7-oxo-11beta,19-dihydroxy-13-epi-ent-pimara-8(9),15-diene (9), and 8 alpha,19-dihydroxy-9 alpha,11 alpha:15,16-diepoxy-13-epi-ent-pimarane (11), while the feeding of 13-epi-ent-pimara-9(11),15-diene-19-oic acid (5) with this fungus afforded 1-oxo-2 alpha,9 alpha-dihydroxy-13-epi-ent-pimara-11,15-dien-19-oic acid (13), 1-oxo-2 beta,9 alpha-dihydroxy-13-epi-ent-pimara-11,15-dien-19-oic acid (14), 13-epi-ent-pimara-9(11),15-dien-1,19-dioic acid 1,2-lactone (15), and 1-oxo-12 beta-hydroxy-13-epi-ent-pimara-9(11),15-dien-19-oic acid (16). In both biotransformations, the main reaction was the epoxidation of the 9(11)-double bond, followed by rearrangement to afford allylic alcohols. The formation of lactone 15 represents the first time that a Baeyer-Villiger oxidation has been observed in a microbiological transformation with this fungus.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center