Send to

Choose Destination
Vaccine. 2009 Feb 18;27(8):1216-29. doi: 10.1016/j.vaccine.2008.12.014. Epub 2009 Jan 4.

Recombinant attenuated Listeria monocytogenes vaccine expressing Francisella tularensis IglC induces protection in mice against aerosolized Type A F. tularensis.

Author information

Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California - Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1688, United States.


Fransicella tularensis, the causative agent of tularemia, is in the top category (Category A) of potential agents of bioterrorism. To develop a safer vaccine against aerosolized F. tularensis, we have employed an attenuated Listeria monocytogenes, which shares with F. tularensis an intracellular and extraphagosomal lifestyle, as a delivery vehicle for F. tularensis antigens. We constructed recombinant L. monocytogenes (rLm) vaccines stably expressing seven F. tularensis proteins including IglC (rLm/iglC), and tested their immunogenicity and protective efficacy against lethal F. tularensis challenge in mice. Mice immunized intradermally with rLm/iglC developed significant cellular immune responses to F. tularensis IglC as evidenced by lymphocyte proliferation and CD4+ and CD8+ T-cell intracellular expression of interferon gamma. Moreover, mice immunized with rLm/iglC were protected against lethal challenge with F. tularensis LVS administered by the intranasal route, a route chosen to mimic airborne infection, and, most importantly, against aerosol challenge with the highly virulent Type A F. tularensis SchuS4 strain.

[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center