Send to

Choose Destination
Clin Oral Implants Res. 2009 Jan;20(1):7-16. doi: 10.1111/j.1600-0501.2008.01604.x.

Evaluation of a new biodegradable membrane to prevent gingival ingrowth into mandibular bone defects in minipigs.

Author information

Clinic for Fixed and Removable Prosthodontics and Dental Material Science, University of Zurich, Zurich, Switzerland.



The aim of this study was to test whether a synthetic, biodegradable membrane made of polyethylene glycol (PEG) can prevent soft-tissue ingrowth into alveolar defects.


In each of 16 minipigs, three mandibular premolars were bilaterally extracted. Three months later, acute standardized defects (diameter 8 mm, depth 8 mm) were prepared. Four treatment modalities were randomly allocated to the defects: (1) PEG membrane plus collagen sponge, (2) polylactide (PLA) membrane plus collagen sponge, (3) collagen sponge alone, and (4) empty defect. Animals were sacrificed at 10 days (n=5), 21 days (n=5), or 2 months (n=6) after treatment. Qualitative and quantitative histological evaluations of soft-tissue ingrowth and bone regeneration were performed on nondecalcified ground sections. For statistical analysis, the Mann-Whitney-Wilcoxon test, the Kruskal-Wallis, and the paired t-test were applied. P-values were adjusted using the Dunnett-Hsu adjustment.


At 10 days, the PEG membrane group showed the least soft-tissue ingrowth (mean value -0.75 mm; range -1.35 to -0.10), followed by the PLA membrane group -0.18 mm (-0.80 to 0.44), the collagen group 0.04 mm (-0.65 to 0.73), and the empty defects 0.60 mm (-0.08 to 1.29). Statistically significant differences were observed between the PEG membrane group and the empty defects (P<0.05). At 21 days, the highest percentage of newly formed bone was found in the PEG membrane group (mean 28.4%; range 21.6-35.2) compared with 23.7% (16.9-30.5; PLA membrane), 15.2% (8.2-22.2; collagen group), and 21.6% (14.5-28.8; empty defects). Statistically significant differences were only found between the PEG membrane group and the collagen group (P<0.05). At 2 months, the tested parameters revealed no statistically significant differences between the groups.


The experimental PEG membrane applied in the present study successfully prevented collapse of the covering soft tissues to a degree similar to the PLA membrane. The combination of a collagen sponge and the PEG membrane showed the least soft-tissue ingrowth at 10 days and promoted more bone formation at 21 days.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center