Send to

Choose Destination
Biochimie. 1991 Apr;73(4):423-31.

DNA binding properties of the LexA repressor.

Author information

Institut de Biologie Mol├ęculaire et Cellulaire, CNRS LP6201, Strasbourg, France.


The LexA repressor from Escherichia coli negatively regulates the transcription of about 20 different genes upon binding with variable affinity to single-, double- or even triple-operators as in the case of the recN gene. Binding of LexA to multiple operators is cooperative if the spacing between these operators is favorable. LexA recognizes DNA via its amino-terminal domain. The three-dimensional structure of this domain has been determined by NMR measurements. It contains three alpha-helices spanning residues 8-20, 28-35 and 41-54. In view of this structure, but also according to homology considerations and the unusual contact pattern with the DNA backbone, the LexA repressor is not a normal helix-turn-helix DNA binding protein like for example phage lambda repressor. LexA is at best a distant relative of this class of transcription factors and should probably be considered as a protein that contains a new DNA binding motif. A cluster of LexA mutant repressors deficient in DNA binding falling into the third helix (residues 41-54 bp) suggests that this helix is involved in DNA recognition.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center