Send to

Choose Destination
Bioorg Med Chem. 2009 Feb 1;17(3):1222-31. doi: 10.1016/j.bmc.2008.12.025. Epub 2008 Dec 24.

New N-substituted 9-azabicyclo[3.3.1]nonan-3alpha-yl phenylcarbamate analogs as sigma2 receptor ligands: synthesis, in vitro characterization, and evaluation as PET imaging and chemosensitization agents.

Author information

Department of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA.


A series of N-substituted 9-azabicyclo[3.3.1]nonan-3alpha-yl phenylcarbamate analogs were synthesized. Among them, WC-26 and WC-59 were identified as the most potent sigma(2) receptor ligands (K(i)=2.58 and 0.82 nM, respectively) with high selectivity against sigma(1) (K(i) of sigma(1)/sigma(2) ratio=557 and 2087, respectively). [(18)F]WC-59 was radiolabeled via a nucleophilic substitution of a mesylate precursor by [(18)F]fluoride, and in vitro direct binding studies of [(18)F]WC-59 were conducted using membrane preparations from murine EMT-6 solid breast tumors. The results indicate that [(18)F]WC-59 binds specifically to sigma(2) receptors in vitro (K(d)= approximately 2 nM). Biodistribution studies of [(18)F]WC-59 in EMT-6 tumor-bearing mice indicated that the tracer was a less suitable candidate for clinical imaging studies than existing F-18 labeled sigma(2) receptor ligands. The ability of WC-26 to enhance the cytotoxic effects of the chemotherapy drug, doxorubicin, was evaluated in cell culture using the mouse breast tumor EMT-6 and the human tumor MDA-MB435. WC-26 greatly increased the ability of doxorubicin to kill these two tumor cell lines in vitro. These results indicate that WC-26 is potentially a useful chemosensitizer for the treatment of cancer when combined with conventional chemotherapeutics.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center