Format

Send to

Choose Destination
Biochim Biophys Acta. 1991 Sep 30;1068(2):133-41.

Pharmacokinetics of stealth versus conventional liposomes: effect of dose.

Author information

1
Department of Pharmacology, University of Alberta, Edmonton, Canada.

Abstract

Liposomes which substantially avoid uptake into the mononuclear phagocyte system (MPS), termed Stealth liposomes, have recently been formulated (Allen, T.M. and Chonn, A., (1987) FEBS Lett. 223, 42-46). The pharmacokinetics of stealth liposomes as a function of liposome dose and a comparison to conventional liposome pharmacokinetics, was the subject of the present study. We have examined the tissue distribution of two different formulations of stealth liposomes, i.e., sphingomyelin:egg phosphatidylcholine:cholesterol:monosialoganglioside GM1 (SM:PC:CHOL:GM1) 1:1:1:0.2 and SM:PC:CHOL:polyethylene glycol distearoylphosphatidylethanolamine (PEG(1990)-DSPE) 1:1:1:0.2, and compared them with the tissue distributions seen for a liposomal formulation which is avidly removed from circulation by the cells of the MP system (PC:CHOL, 2:1). Tissue distribution in mice was examined over a 100-fold concentration range (0.1 to 10 mumol phospholipid/mouse) and at several time points over a 48 h time period. Liposome size ranged from 92-123 nm in diameter for all compositions. Clearance from blood of PC:CHOL liposomes following intravenous administration showed a marked dose dependence (i.e., saturation-type or Michaelis-Menten kinetics), with MPS uptake decreasing and % of injected dose in blood increasing as dose increased, over the entire dosage range. Injection of stealth liposomes, on the other hand, resulted in % of injected doses of liposomes in MPS, blood and carcass which were dose-independent and log-linear (first order kinetics) over the entire dosage range. The doses of stealth liposomes containing PEG(1900)-DSPE required for MPS saturation was higher than 10 mumol phospholipid/mouse or 400 mumol/kg. The dosage-independence of the pharmacokinetics of stealth liposomes and their lack of MPS saturation within the therapeutic dose range are two more assets, in addition to the prolonged circulation half-lives, leading towards their eventual use as drug delivery systems in the clinic.

PMID:
1911826
DOI:
10.1016/0005-2736(91)90201-i
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center