Format

Send to

Choose Destination
J Gen Physiol. 2009 Jan;133(1):111-27. doi: 10.1085/jgp.200810154.

Molecular basis for cation selectivity in claudin-2-based paracellular pores: identification of an electrostatic interaction site.

Author information

1
Division of Nephrology, Department of Medicine,University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA. alanyu@usc.edu

Abstract

Paracellular ion transport in epithelia is mediated by pores formed by members of the claudin family. The degree of selectivity and the molecular mechanism of ion permeation through claudin pores are poorly understood. By expressing a high-conductance claudin isoform, claudin-2, in high-resistance Madin-Darby canine kidney cells under the control of an inducible promoter, we were able to quantitate claudin pore permeability. Claudin-2 pores were found to be narrow, fluid filled, and cation selective. Charge selectivity was mediated by the electrostatic interaction of partially dehydrated permeating cations with a negatively charged site within the pore that is formed by the side chain carboxyl group of aspartate-65. Thus, paracellular pores use intrapore electrostatic binding sites to achieve a high conductance with a high degree of charge selectivity.

PMID:
19114638
PMCID:
PMC2606938
DOI:
10.1085/jgp.200810154
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center