Format

Send to

Choose Destination
Neuron. 2008 Dec 26;60(6):1142-52. doi: 10.1016/j.neuron.2008.09.021.

Probabilistic population codes for Bayesian decision making.

Author information

1
Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA.

Abstract

When making a decision, one must first accumulate evidence, often over time, and then select the appropriate action. Here, we present a neural model of decision making that can perform both evidence accumulation and action selection optimally. More specifically, we show that, given a Poisson-like distribution of spike counts, biological neural networks can accumulate evidence without loss of information through linear integration of neural activity and can select the most likely action through attractor dynamics. This holds for arbitrary correlations, any tuning curves, continuous and discrete variables, and sensory evidence whose reliability varies over time. Our model predicts that the neurons in the lateral intraparietal cortex involved in evidence accumulation encode, on every trial, a probability distribution which predicts the animal's performance. We present experimental evidence consistent with this prediction and discuss other predictions applicable to more general settings.

PMID:
19109917
PMCID:
PMC2742921
DOI:
10.1016/j.neuron.2008.09.021
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center