Send to

Choose Destination
J Biomed Mater Res B Appl Biomater. 2009 Jul;90(1):396-403. doi: 10.1002/jbm.b.31298.

Biomechanical and histomorphometric evaluation of a thin ion beam bioceramic deposition on plateau root form implants: an experimental study in dogs.

Author information

Department of Oral and Maxillofacial Surgery, Universidade Federal de Santa Catarina, Florianopolis, Brazil.


The aim of this study was to evaluate the biomechanical fixation, bone-to-implant contact, and bone morphology of an ion beam assisted deposition of a 300-500 nm thick Ca- and P-based bioceramic surface on a previously alumina-blasted/acid-etched Ti-6Al-4V implant surface in a dog model.


Thirty-six 4.5 x 11 mm plateau root form implants, control (alumina-blasted/acid-etched-AB/AE) and test groups (AB/AE+300-500 nm bioceramic coating, Nanotite) were placed along a proximal tibia of six beagle dogs remaining for 2 and 4 weeks (n = 3 animals per implantation time). Following euthanization, the implants were torqued to interface fracture at approximately 0.196 radians/sec until a 10% maximum load drop was detected. The implants in bone were nondecalcified processed to approximately 30 microm thickness slides for histomorphologic and bone-to-implant contact (BIC) assessment. Statistical analyses for torque to interface fracture were performed using a mixed model ANOVA, and BIC was evaluated by the chi2 test at 95% level of significance.


At 4 weeks, significantly higher torque to interface fracture was observed for the Test implant surface. Histomorphologic analysis showed higher degrees of bone organization for test implants compared to control at 2 and 4 weeks. Significantly higher BIC was observed at 4 weeks compared to 2 weeks (no statistical differences between control and test implants).


The higher torque to interface fracture and increased bone maturity obtained in this study support that the surface modification comprising a 300-500 nm Ca- and P-based bioceramic coating positively influenced healing around pleateau root form implants.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center