Send to

Choose Destination
Endocrinology. 2009 Apr;150(4):1931-4. doi: 10.1210/en.2008-1471. Epub 2008 Dec 18.

Postnatal stress in birds: a novel model of glucocorticoid programming of the hypothalamic-pituitary-adrenal axis.

Author information

Division of Environmental and Evolutionary Biology, University of Glasgow, Glasgow, United Kingdom.


There is growing international interest in how environmental conditions experienced during development can shape adult phenotypes and the extent to which such induced changes are adaptive. One physiological system that links an individual to changes in environmental circumstances during development is the hypothalamic-pituitary-adrenal axis. Mammalian studies have linked early postnatal stress to later changes in the hypothalamic-pituitary-adrenal axis; however, the physiological link [lactational corticosterone (CORT) transfer] between mother and offspring during postnatal development constrains the ability to determine the direct effects of such stressors on subsequent physiology and behavior. Here we present a novel model using an avian species, the zebra finch (Taeniopygia guttata), in which maternal hormonal transfer during postnatal development is likely to be absent. Postnatal exposure of chicks to the stress hormone CORT was manipulated for a 16-d period up until nutritional independence (28 d), and the long-term effects on the physiological response to stress determined. CORT doses were scaled to mimic the physiological response of juvenile birds to a capture-handling-restraint protocol. CORT-fed birds showed exaggerated and prolonged responses to acute stress at 60 d of age. Our results clearly demonstrate that postnatal stress has significant long-term effects on the physiological stress response in birds and provides a potential mechanism underlying long-term behavioural responses to developmental conditions. This study represents the first direct evidence for postnatal glucocorticoid programming of the stress response using this novel model for postnatal stress. This model therefore provides an important tool with which to investigate the role of glucocorticoids in shaping adult phenotypes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center