Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Cell Biol. 2009 Jan;11(1):92-6. doi: 10.1038/ncb1817. Epub 2008 Dec 14.

Activation of ATM depends on chromatin interactions occurring before induction of DNA damage.

Author information

1
Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Abstract

Efficient and correct responses to double-stranded breaks (DSB) in chromosomal DNA are crucial for maintaining genomic stability and preventing chromosomal alterations that lead to cancer. The generation of DSB is associated with structural changes in chromatin and the activation of the protein kinase ataxia-telangiectasia mutated (ATM), a key regulator of the signalling network of the cellular response to DSB. The interrelationship between DSB-induced changes in chromatin architecture and the activation of ATM is unclear. Here we show that the nucleosome-binding protein HMGN1 modulates the interaction of ATM with chromatin both before and after DSB formation, thereby optimizing its activation. Loss of HMGN1 or ablation of its ability to bind to chromatin reduces the levels of ionizing radiation (IR)-induced ATM autophosphorylation and the activation of several ATM targets. IR treatments lead to a global increase in the acetylation of Lys 14 of histone H3 (H3K14) in an HMGN1-dependent manner and treatment of cells with histone deacetylase inhibitors bypasses the HMGN1 requirement for efficient ATM activation. Thus, by regulating the levels of histone modifications, HMGN1 affects ATM activation. Our studies identify a new mediator of ATM activation and demonstrate a direct link between the steady-state intranuclear organization of ATM and the kinetics of its activation after DNA damage.

PMID:
19079244
PMCID:
PMC2717731
DOI:
10.1038/ncb1817
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center