Format

Send to

Choose Destination
See comment in PubMed Commons below
Ann N Y Acad Sci. 2008 Dec;1147:395-412. doi: 10.1196/annals.1427.027.

Mitochondrial approaches for neuroprotection.

Author information

  • 1Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA.

Abstract

A large body of evidence from postmortem brain tissue and genetic analysis in humans and biochemical and pathological studies in animal models (transgenic and toxin) of neurodegeneration suggest that mitochondrial dysfunction is a common pathological mechanism. Mitochondrial dysfunction from oxidative stress, mitochondrial DNA deletions, pathological mutations, altered mitochondrial morphology, and interaction of pathogenic proteins with mitochondria leads to neuronal demise. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. This review discusses the potential therapeutic efficacy of creatine, coenzyme Q10, idebenone, synthetic triterpenoids, and mitochondrial targeted antioxidants (MitoQ) and peptides (SS-31) in in vitro studies and in animal models of Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. We have also reviewed the current status of clinical trials of creatine, coenzyme Q10, idebenone, and MitoQ in neurodegenerative disorders. Further, we discuss newly identified therapeutic targets, including peroxisome proliferator-activated receptor-gamma-coactivator and sirtuins, which provide promise for future therapeutic developments in neurodegenerative disorders.

PMID:
19076459
PMCID:
PMC2605644
DOI:
10.1196/annals.1427.027
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center