Format

Send to

Choose Destination
Dev Biol. 1991 Aug;146(2):531-41.

Identification of laminin domains involved in branching morphogenesis: effects of anti-laminin monoclonal antibodies on mouse embryonic lung development.

Author information

1
Department of Pathology, University of Michigan Medical School, Ann Arbor 48109.

Abstract

We recently found that polyclonal antibodies to laminin, a basement membrane-related glycoprotein, inhibited murine lung morphogenesis when added to organ cultures of mouse embryonic lung. Using a series of monoclonal anti-laminin antibodies with previously characterized subunit specificity (termed AL-1, AL-2, AL-3, AL-4, and AL-5), the deposition and functional involvement of different laminin domains in the developing lung were investigated. By immunohistochemistry the antibodies' reactivity was largely localized to the basement membrane, but was also present diffusely in the extracellular matrix throughout the mesenchyme. Organ cultures of lung explants from Day 12 embryos were cultured for 3 days in the presence of 50-100 micrograms/ml of each antibody or in the presence of the same concentration of immunoglobulins G and M, laminin-neutralized antibody, or medium alone. Cultures were monitored by phase-contrast microscopy, light microscopy, and immunofluorescence. Although all antibodies penetrated the tissues in culture, only two of them inhibited branching activity. These two antibodies were AL-1, which binds on or near the cross region of laminin, and AL-5, which binds to the lateral short arms at the globular end regions of the B chain of laminin. Inhibition of branching with these two antibodies was dose-dependent and statistically significant for the two concentrations used. AL-2, AL-3, AL-4, laminin-neutralized antibodies and control immunoglobulins did not alter lung morphogenesis. The two domains of laminin that promote lung branching morphogenesis have been reported by others to promote the attachment of a variety of cells and/or bind heparin. These domains of laminin may promote branching morphogenesis by facilitating cell attachment and, consequently, cell proliferation.

PMID:
1907584
DOI:
10.1016/0012-1606(91)90254-z
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science Icon for MLibrary (Deep Blue)
Loading ...
Support Center