Format

Send to

Choose Destination
J Biol Chem. 2009 Feb 13;284(7):4439-50. doi: 10.1074/jbc.M805546200. Epub 2008 Dec 11.

Tumor necrosis factor-related weak inducer of apoptosis augments matrix metalloproteinase 9 (MMP-9) production in skeletal muscle through the activation of nuclear factor-kappaB-inducing kinase and p38 mitogen-activated protein kinase: a potential role of MMP-9 in myopathy.

Author information

1
Departments of Anatomical Sciences and Neurobiology and Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.

Abstract

Destruction of skeletal muscle extracellular matrix is an important pathological consequence of many diseases involving muscle wasting. However, the underlying mechanisms leading to extracellular matrix breakdown in skeletal muscle tissues remain unknown. Using a microarray approach, we investigated the effect of tumor necrosis factor-related weak inducer of apoptosis (TWEAK), a recently identified muscle-wasting cytokine, on the expression of extracellular proteases in skeletal muscle. Among several other matrix metalloproteinases (MMPs), we found that the expression of MMP-9, a type IV collagenase, was drastically increased in myotubes in response to TWEAK. The level of MMP-9 was also higher in myofibers of TWEAK transgenic mice. TWEAK increased the activation of both classical and alternative nuclear factor-kappaB (NF-kappaB) signaling pathways. Inhibition of NF-kappaB activity blocked the TWEAK-induced production of MMP-9 in myotubes. TWEAK also increased the activation of AP-1, and its inhibition attenuated the TWEAK-induced MMP-9 production. Overexpression of a kinase-dead mutant of NF-kappaB-inducing kinase or IkappaB kinase-beta but not IkappaB kinase-alpha significantly inhibited the TWEAK-induced activation of MMP-9 promoter. The activation of MMP-9 also involved upstream recruitment of TRAF2 and cIAP2 proteins. TWEAK increased the activity of ERK1/2, JNK1, and p38 MAPK. However, the inhibition of only p38 MAPK blocked the TWEAK-induced expression of MMP-9 in myotubes. Furthermore the loss of body and skeletal muscle weights, inflammation, fiber necrosis, and degradation of basement membrane around muscle fibers were significantly attenuated in Mmp9 knock-out mice on chronic administration of TWEAK protein. The study unveils a novel mechanism of skeletal muscle tissue destruction in pathological conditions.

PMID:
19074147
PMCID:
PMC2640955
DOI:
10.1074/jbc.M805546200
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center