Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2009 Mar;45(1 Suppl):S199-209. doi: 10.1016/j.neuroimage.2008.11.007. Epub 2008 Nov 21.

Machine learning classifiers and fMRI: a tutorial overview.

Author information

1
Princeton Neuroscience Institute/Psychology Department, Princeton University, Princeton, NJ 08540, USA. fpereira@princeton.edu

Abstract

Interpreting brain image experiments requires analysis of complex, multivariate data. In recent years, one analysis approach that has grown in popularity is the use of machine learning algorithms to train classifiers to decode stimuli, mental states, behaviours and other variables of interest from fMRI data and thereby show the data contain information about them. In this tutorial overview we review some of the key choices faced in using this approach as well as how to derive statistically significant results, illustrating each point from a case study. Furthermore, we show how, in addition to answering the question of 'is there information about a variable of interest' (pattern discrimination), classifiers can be used to tackle other classes of question, namely 'where is the information' (pattern localization) and 'how is that information encoded' (pattern characterization).

PMID:
19070668
PMCID:
PMC2892746
DOI:
10.1016/j.neuroimage.2008.11.007
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center