Format

Send to

Choose Destination
Philos Trans R Soc Lond B Biol Sci. 2009 Apr 12;364(1519):1021-32. doi: 10.1098/rstb.2008.0234.

Determining the function of zebrafish epithalamic asymmetry.

Author information

1
Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA.

Abstract

As in many fishes, amphibians and reptiles, the epithalamus of the zebrafish, Danio rerio, develops with pronounced left-right (L-R) asymmetry. For example, in more than 95 per cent of zebrafish larvae, the parapineal, an accessory to the pineal organ, forms on the left side of the brain and the adjacent left habenular nucleus is larger than the right. Disruption of Nodal signalling affects this bias, producing equal numbers of larvae with the parapineal on the left or the right side and corresponding habenular reversals. Pre-selection of live larvae using fluorescent transgenic reporters provides a useful substrate for studying the effects of neuroanatomical asymmetry on behaviour. Previous studies had suggested that epithalamic directionality is correlated with lateralized behaviours such as L-R eye preference. We find that the randomization of epithalamic asymmetry, through perturbation of the nodal-related gene southpaw, does not alter a variety of motor behaviours, including responses to lateralized stimuli. However, we discovered significant deficits in swimming initiation and in the total distance navigated by larvae with parapineal reversals. We discuss these findings with respect to previous studies and recent work linking the habenular region with control of the motivation/reward pathway of the vertebrate brain.

PMID:
19064346
PMCID:
PMC2666080
DOI:
10.1098/rstb.2008.0234
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center