Format

Send to

Choose Destination
Biochim Biophys Acta. 2009 Sep;1792(9):925-30. doi: 10.1016/j.bbadis.2008.11.002. Epub 2008 Nov 13.

Glycosylation diseases: quo vadis?

Author information

1
Molecular Structure and Function Program, University of Toronto, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8. harry@sickkids.ca

Abstract

About 250 to 500 glycogenes (genes that are directly involved in glycan assembly) are in the human genome representing about 1-2% of the total genome. Over 40 human congenital diseases associated with glycogene mutations have been described to date. It is almost certain that the causative glycogene mutations for many more congenital diseases remain to be discovered. Some glycogenes are involved in the synthesis of only a specific protein and/or a specific class of glycan whereas others play a role in the biosynthesis of more than one glycan class. Mutations in the latter type of glycogene result in complex clinical phenotypes that present difficult diagnostic problems to the clinician. In order to understand in biochemical terms the clinical signs and symptoms of a patient with a glycogene mutation, one must understand how the glycogene works. That requires, first of all, determination of the target protein or proteins of the glycogene followed by an understanding of the role, if any, of the glycogene-dependent glycan in the functions of the protein. Many glycogenes act on thousands of glycoproteins. There are unfortunately no general methods to identify all the potentially large number of glycogene target proteins and which of these proteins are responsible for the mutant phenotypes. Whereas biochemical methods have been highly successful in the discovery of glycogenes responsible for many congenital diseases, it has more recently been necessary to use other methods such as homozygosity mapping. Accurate diagnosis of many recently discovered diseases has become difficult and new diagnostic procedures must be developed. Last but not least is the lack of effective treatment for most of these children and of animal models that can be used to test new therapies.

PMID:
19061954
PMCID:
PMC3927646
DOI:
10.1016/j.bbadis.2008.11.002
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center