Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19462-7. doi: 10.1073/pnas.0807227105. Epub 2008 Dec 3.

Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli.

Author information

1
Department of Bioengineering, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0412, USA.

Abstract

Broad-acting transcription factors (TFs) in bacteria form regulons. Here, we present a 4-step method to fully reconstruct the leucine-responsive protein (Lrp) regulon in Escherichia coli K-12 MG 1655 that regulates nitrogen metabolism. Step 1 is composed of obtaining high-resolution ChIP-chip data for Lrp, the RNA polymerase and expression profiles under multiple environmental conditions. We identified 138 unique and reproducible Lrp-binding regions and classified their binding state under different conditions. In the second step, the analysis of these data revealed 6 distinct regulatory modes for individual ORFs. In the third step, we used the functional assignment of the regulated ORFs to reconstruct 4 types of regulatory network motifs around the metabolites that are affected by the corresponding gene products. In the fourth step, we determined how leucine, as a signaling molecule, shifts the regulatory motifs for particular metabolites. The physiological structure that emerges shows the regulatory motifs for different amino acid fall into the traditional classification of amino acid families, thus elucidating the structure and physiological functions of the Lrp-regulon. The same procedure can be applied to other broad-acting TFs, opening the way to full bottom-up reconstruction of the transcriptional regulatory network in bacterial cells.

PMID:
19052235
PMCID:
PMC2614783
DOI:
10.1073/pnas.0807227105
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center