Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1991 Jun 25;266(18):11649-53.

Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors.

Author information

  • 1Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106.


Pentosidine is a recently discovered fluorescent protein cross-link from human extracellular matrix that involves lysyl and arginyl residues in an imidazo (4, 5b) pyridinium ring. Pentosidine could be synthesized in vitro by the reaction of ribose, lysine, and arginine. The potential biological significance of the molecule prompted us to investigate its mechanism of formation from D-ribose and key Maillard intermediates, as well as from other potential precursor sugars. The yield of pentosidine from N alpha-t-Boc-lysine, N alpha-t-Boc-arginine, and D-ribose was highest at pH 9.0 and 65 degrees C, but was unaffected by reactant ratios at alkaline pH suggesting an important role for base catalysis. Ribated Boc-lysine on incubation with N alpha-t-Boc-arginine afforded a fluorescent compound with UV, fluorescence, 1H NMR, and MS properties identical with those from native or synthetic pentosidine. 3-Deoxypentosone, however, was not a major pentosidine precursor. Pentosidine became slowly detectable in bovine serum albumin incubated with 0.25 M and 1.0 M glucose and reached, at 30 days, 13.2 and 17 pmol/mg bovine serum albumin, respectively. Spectroscopical properties of glucose-derived pentosidine were identical with those from ribose-derived pentosidine. Pentosidine formed from glucated Boc-lysine with N alpha-t-Boc-arginine in higher yields than from glucose under standard conditions. Fructose, and unexpectedly ascorbate, also formed pentosidine in similar yields as glucose. The discovery that pentosidine can form not only from pentoses but also from hexoses and ascorbate raises major new questions concerning biochemical pathways of the Maillard reaction in vivo.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center