Send to

Choose Destination
Planta. 2009 Feb;229(3):617-31. doi: 10.1007/s00425-008-0860-8. Epub 2008 Dec 2.

Novel type II cell wall architecture in dichlobenil-habituated maize calluses.

Author information

Area de Fisiología Vegetal, Facultad de CC., Biológicas y Ambientales, Universidad de León, 24071, León, Spain.


Growth of maize (Zea mays L.) callus-culture cells was inhibited using dichlobenil (2,6 dichlorobenzonitrile, DCB) concentrations > or =1 microM; I (50) value for the effect on inhibited fresh weight gain was 1.5 microM. By increasing the DCB concentration in the culture medium, DCB-habituated cells became 13 times more tolerant of the inhibitor (I (50): 20 microM). In comparison with non-habituated calluses, DCB-habituated calluses grew slower, were less friable and were formed by irregularly shaped cells surrounded by a thicker cell wall. By using an extensive array of techniques, changes in type II cell wall composition and structure associated with DCB habituation were studied. Walls from DCB-habituated cells showed a reduction of up to 75% in cellulose content, which was compensated for by a net increase in arabinoxylan content. Arabinoxylans also showed a reduction in their extractability and a marked increase in their relative molecular mass. DCB habituation also involved a shift from ferulate to coumarate-rich cells walls, and enrichment in cell wall esterified hydroxycinnamates and dehydroferulates. The content of polymers such as mixed-glucan, xyloglucan, mannans, pectins or proteins did not vary or was reduced. These results prove that the architecture of type II cell walls is able to compensate for deficiencies in cellulose content with a more extensive and phenolic cross-linked network of arabinoxylans, without necessitating beta-glucan or other polymer enhancement. As a consequence of this modified architecture, walls from DCB-habituated cells showed a reduction in their swelling capacity and an increase both in pore size and in resistance to polysaccharide hydrolytic enzymes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center