Format

Send to

Choose Destination
See comment in PubMed Commons below
Neurology. 2009 Mar 24;72(12):1041-7. doi: 10.1212/01.wnl.0000338699.56379.11. Epub 2008 Nov 26.

Heterozygous carriers of a Parkin or PINK1 mutation share a common functional endophenotype.

Author information

1
Department of Neurology, Christian-Albrechts University, Kiel, Germany.

Abstract

OBJECTIVE:

To use a combined neurogenetic-neuroimaging approach to examine the functional consequences of preclinical dopaminergic nigrostriatal dysfunction in the human motor system. Specifically, we examined how a single heterozygous mutation in different genes associated with recessively inherited Parkinson disease alters the cortical control of sequential finger movements.

METHODS:

Nonmanifesting individuals carrying a single heterozygous Parkin (n = 13) or PINK1 (n = 9) mutation and 23 healthy controls without these mutations were studied with functional MRI (fMRI). During fMRI, participants performed simple sequences of three thumb-to-finger opposition movements with their right dominant hand. Since heterozygous Parkin and PINK1 mutations cause a latent dopaminergic nigrostriatal dysfunction, we predicted a compensatory recruitment of those rostral premotor areas that are normally implicated in the control of complex motor sequences. We expected this overactivity to be independent of the underlying genotype.

RESULTS:

Task performance was comparable for all groups. The performance of a simple motor sequence task consistently activated the rostral supplementary motor area and right rostral dorsal premotor cortex in mutation carriers but not in controls. Task-related activation of these premotor areas was similar in carriers of a Parkin or PINK1 mutation.

CONCLUSION:

Mutations in different genes linked to recessively inherited Parkinson disease are associated with an additional recruitment of rostral supplementary motor area and rostral dorsal premotor cortex during a simple motor sequence task. These premotor areas were recruited independently of the underlying genotype. The observed activation most likely reflects a "generic" compensatory mechanism to maintain motor function in the context of a mild dopaminergic deficit.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center