Send to

Choose Destination
Am J Pathol. 2009 Jan;174(1):248-55. doi: 10.2353/ajpath.2009.080576. Epub 2008 Nov 26.

Beta-catenin is a mediator of the response of fibroblasts to irradiation.

Author information

Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada.


Radiation causes soft tissue complications that include fibrosis and deficient wound healing. beta-Catenin, a key component in the canonical Wnt-signaling pathway, is activated in fibrotic processes and wound repair and, as such, could play a role in mediating cellular responses to irradiation. beta-Catenin can form a transcriptionally active complex with members of the Tcf family. A reporter mouse model, in addition to human cell cultures, was used to demonstrate that ionizing radiation activates beta-catenin-mediated, Tcf-dependent transcription both in vitro and in vivo. Furthermore, radiation activates beta-catenin via a Wnt-mediated mechanism, as in the presence of dickkopf-1, an inhibitor of Wnt receptor activation, beta-catenin levels did not increase after irradiation. Fibroblast cell cultures were derived from mice expressing either null or stabilized beta-catenin alleles. Cells expressing stabilized beta-catenin alleles had a higher proliferation rate and formed more colony-forming units than wild-type or null cells after irradiation. Wound healing was studied in these same mice after irradiation. There was a positive correlation between the tensile strength of the wound, the expression levels of type 1 collagen in the skin, and beta-catenin levels. Mice treated with lithium showed increased beta-catenin levels and increased wound strength. beta-Catenin mediates the effects of ionizing radiation in fibroblasts, and its modulation has the potential to decrease the severity of radiation-induced soft tissue complications.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center