Send to

Choose Destination
Nutrition. 2009 Mar;25(3):340-9. doi: 10.1016/j.nut.2008.08.012. Epub 2008 Nov 26.

Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro.

Author information

Faculty of Kinesiology and Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.



A growing body of evidence supports an antiobesity effect of dairy products; however, the mechanisms remain unclear. The objective of this study was to explore possible intestinal mechanisms by which dairy delivers an antiobesity effect. The human intestinal cell line, NCI-H716, was used to test the hypothesis that branched-chain amino acids and dairy proteins regulate satiety hormone secretion and modulate genes involved in fatty acid and cholesterol metabolism.


In dose-response (0.5%, 1.0%, 2.0%, and 3.0%) studies, the effect of leucine, isoleucine, valine, skim milk, casein, and whey on glucagon-like peptide-1 release and the expression of selected genes were tested.


Leucine, isoleucine, skim milk, and casein stimulated glucagon-like peptide-1 release (P < 0.05). Isoleucine and whey downregulated the expression of intestinal-type fatty acid binding protein (i-FABP), fatty acid transport protein 4 (FATP4), Niemann-Pick C-1-like-1 protein (NPC1L1), acetyl-coenzyme A carboxylase (ACC), fatty acid synthase (FAS), sterol regulatory element-binding protein-2 (SREBP-2), and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR; P < 0.05). Leucine and valine downregulated the expression of NPC1L1, ACC, FAS, SREBP-2, and HMGCR (P < 0.05). Casein downregulated the expression of i-FABP, FATP4, ACC, FAS, SREBP-2, and HMGCR (P < 0.05). Skim milk downregulated the expression of ACC, FAS, and SREBP-2, but not i-FABP, FATP4, and NPC1L1.


This work suggests that the antiobesity effect of dairy may be mediated, at least in part, by integration of events that promote glucagon-like peptide-1 secretion and inhibit expression of genes involved in intestinal fatty acid and cholesterol absorption and synthesis.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center