Format

Send to

Choose Destination
Cogn Neurodyn. 2009 Sep;3(3):281-93. doi: 10.1007/s11571-008-9070-0. Epub 2008 Nov 23.

New mechanics of traumatic brain injury.

Author information

1
Land Operations Division, Defence Science & Technology Organisation, Adelaide, SA, Australia, Vladimir.Ivancevic@dsto.defence.gov.au.

Abstract

The prediction and prevention of traumatic brain injury is a very important aspect of preventive medical science. This paper proposes a new coupled loading-rate hypothesis for the traumatic brain injury (TBI), which states that the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes the head in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid discontinuous deformations: translational dislocations and rotational disclinations. Brain's dislocations and disclinations, caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum brain model.

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center