Format

Send to

Choose Destination
Oncogene. 2008 Nov 24;27(55):6981-93. doi: 10.1038/onc.2008.348.

Biomechanical regulation of cell orientation and fate.

Author information

1
Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California at San Francisco, San Francisco, CA 94143, USA.

Abstract

Biomechanical regulation of tumor phenotypes have been noted for several decades, yet the function of mechanics in the co-evolution of the tumor epithelium and altered cancer extracellular matrix has not been appreciated until fairly recently. In this review, we examine the dynamic interaction between the developing epithelia and the extracellular matrix, and discuss how similar interactions are exploited by the genetically modified epithelium during tumor progression. We emphasize the process of mechanoreciprocity, which is a phenomenon observed during epithelial transformation, in which tension generated within the extracellular microenvironment induce and cooperate with opposing reactive forces within transformed epithelium to drive tumor progression and metastasis. We highlight the importance of matrix remodeling, and present a new, emerging paradigm that underscores the importance of tissue morphology as a key regulator of epithelial cell invasion and metastasis.

PMID:
19029939
PMCID:
PMC2648514
DOI:
10.1038/onc.2008.348
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center