Send to

Choose Destination
Cardiovasc Res. 2009 Feb 1;81(2):286-93. doi: 10.1093/cvr/cvn322. Epub 2008 Nov 24.

Omega-3 polyunsaturated fatty acids inhibit transient outward and ultra-rapid delayed rectifier K+currents and Na+current in human atrial myocytes.

Author information

Department of Medicine and Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, SAR, China.



The omega-3 (n-3) polyunsaturated fatty acids (omega-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil were recently reported to have an anti-atrial fibrillation effect in humans; however, the ionic mechanisms of this effect are not fully understood. The present study was designed to determine the effects of EPA and DHA on transient outward and ultra-rapid delayed rectifier potassium currents (I(to) and I(Kur)) and the voltage-gated sodium current (I(Na)) in human atrial myocytes.


A whole-cell patch voltage clamp technique was employed to record I(to) and I(Kur), and I(Na) in human atrial myocytes. It was found that EPA and DHA inhibited I(to) in a concentration-dependent manner (IC(50): 6.2 microM for EPA; 4.1 microM for DHA) and positively shifted voltage-dependent activation of the current. In addition, I(Kur) was suppressed by 1-50 microM EPA (IC(50): 17.5 microM) and DHA (IC(50): 4.3 microM). Moreover, EPA and DHA reduced I(Na) in human atrial myocytes in a concentration-dependent manner (IC(50): 10.8 microM for EPA; 41.2 microM for DHA) and negatively shifted the potential of I(Na) availability. The I(Na) block by EPA or DHA was use-independent.


The present study demonstrates for the first time that EPA and DHA inhibit human atrial I(to), I(Kur), and I(Na) in a concentration-dependent manner; these effects may contribute, at least in part, to the anti-atrial fibrillation of omega-3 PUFAs in humans.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center