Format

Send to

Choose Destination
See comment in PubMed Commons below
J Anim Sci. 2009 Mar;87(3):1048-57. doi: 10.2527/jas.2008-1026. Epub 2008 Nov 21.

Effect of DL-malic acid supplementation on feed intake, methane emission, and rumen fermentation in beef cattle.

Author information

1
University College Dublin School of Agriculture, Food Science and Veterinary Medicine, UCD, Lyons Research Farm, Newcastle, Co Dublin, Ireland. pfoley@ucdconnect.ie

Abstract

The objective of this study was to determine the effect of dietary concentration of dl-malic acid (MA) on DMI, CH(4) emission, and rumen fermentation in beef cattle. Two Latin square experiments were conducted. In Exp. 1, six beef heifers (19 +/- 1 mo old) were assigned in a duplicated Latin square to 1 of 3 dietary concentrations of MA on a DMI basis (0%, MA-0; 3.75%, MA-3.75; or 7.5%, MA-7.5) over 3 periods. In Exp. 2, four rumen-fistulated steers (48 +/- 1 mo old) were assigned to 1 of 4 dietary concentrations of MA (0%, MA-0; 2.5%, MA-2.5; 5.0%, MA-5.0; or 7.5%, MA-7.5) on a DMI basis, over 4 periods. Both experimental diets consisted of grass silage and pelleted concentrate (containing MA). Silage was fed ad libitum once daily (a.m.), whereas concentrate was fed twice daily (a.m. and p.m.) with the aim of achieving a total DMI of 40:60 silage:concentrate. In both Exp. 1 and 2, experimental periods consisted of 28 d, incorporating a 13-d acclimatization, a 5-d measurement period, and a 10-d washout period. In Exp. 1, enteric CH(4), feed apparent digestibility, and feed intake were measured over the 5-d measurement period. In Exp. 2, rumen fluid was collected on d 16 to 18, immediately before (a.m.) feeding and 2, 4, 6, and 8 h thereafter. Rumen pH was determined and samples were taken for protozoa count, VFA, and ammonia analysis. Enteric CH(4) emissions were estimated by using the sulfur hexafluoride tracer technique and feed apparent digestibility was estimated by using chromic oxide as an external marker for fecal output. In Exp. 1, increasing dietary MA led to a linear decrease in total DMI (P < 0.001) and total daily CH(4) emissions (P < 0.001). Compared with the control diet, the greatest concentration of MA decreased total daily CH(4) emissions by 16%, which corresponded to a 9% reduction per unit of DMI. Similarly, in Exp. 2, inclusion of MA reduced DMI in a linear (P = 0.002) and quadratic (P < 0.001) fashion. Increasing dietary MA led to a linear decrease in molar proportion of acetic (P = 0.004) and butyric acids (P < 0.001) and an increase in propionic acid (P < 0.001). Ruminal pH tended to increase (P = 0.10) with increasing dietary MA. Dietary inclusion of MA led to a linear (P = 0.01) decrease in protozoa numbers. Increasing supplementation with MA decreased CH(4) emissions, but DMI was also decreased, which could have potentially negative effects on animal performance.

PMID:
19028842
DOI:
10.2527/jas.2008-1026
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Science Societies
    Loading ...
    Support Center