Format

Send to

Choose Destination
See comment in PubMed Commons below
Prog Biophys Mol Biol. 2009 Jan;99(1):42-50. doi: 10.1016/j.pbiomolbio.2008.10.007. Epub 2008 Nov 7.

GroEL assisted folding of large polypeptide substrates in Escherichia coli: Present scenario and assignments for the future.

Author information

1
Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India. tapan@dbeb.iitd.ac.in

Abstract

Escherichia coli chaperonins GroEL and GroES are indispensable for survival and growth of the cell since they provide essential assistance to the folding of many newly translated proteins in the cell. Recent studies indicate that a substantial portion of the proteins involved in the host pathways are completely dependent on GroEL-GroES for their folding and hence providing some explanation for why GroEL is essential for cell growth. Many proteins either small-single domain or large multidomains require assistance from GroEL-ES during their lifetime. Proteins of size up to approximately 70kDa can fold via the cis mechanism during GroEL-ES assisted pathway, but other proteins (>70kDa) that cannot be pushed inside the cavity of GroEL-ATP complex upon binding of GroES fold by an evolved mechanism called trans. In recent years, much work has been done on revealing facts about the cis mechanism involving the GroEL assisted folding of small proteins whereas the trans mechanism with larger polypeptide substrates still remains under cover. In order to disentangle the role of chaperonin GroEL-GroES in the folding of large E. coli proteins, this review discusses a number of issues like the range of large polypeptide substrates acted on by GroEL. Do all these substrates need the complete chaperonin system along with ATP for their folding? Does GroEL act as foldase or holdase during the process? We conclude with a discussion of the various queries that need to be resolved in the future for an extensive understanding of the mechanism of GroEL mediated folding of large substrate proteins in E. coli cytosol.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center