Format

Send to

Choose Destination
See comment in PubMed Commons below
Cytokine. 2008 Dec;44(3):377-85. doi: 10.1016/j.cyto.2008.10.012. Epub 2008 Nov 20.

IL-10 overexpression differentially affects cartilage matrix gene expression in response to TNF-alpha in human articular chondrocytes in vitro.

Author information

1
Department of Trauma and Reconstructive Surgery, Charité-University of Medicine, Campus Benjamin Franklin, FEM, Krahmerstr. 6-10, 12207 Berlin, Germany.

Abstract

Cartilage-specific extracellular matrix synthesis is the prerequisite for chondrocyte survival and cartilage function, but is affected by the pro-inflammatory cytokine TNF-alpha in arthritis. The aim of the present study was to characterize whether the immunoregulatory cytokine IL-10 might modulate cartilage matrix and cytokine expression in response to TNF-alpha. Primary human articular chondrocytes were treated with either recombinant IL-10, TNF-alpha or a combination of both (at 10ng/mL each) or transduced with an adenoviral vector overexpressing human IL-10 and subsequently stimulated with 10ng/ml TNF-alpha for 6 or 24h. The effects of IL-10 on the cartilage-specific matrix proteins collagen type II, aggrecan, matrix-metalloproteinases (MMP)-3, -13 and pro-inflammatory cytokines were evaluated by real-time RT-PCR and immunohistochemistry. Transduced chondrocytes overexpressed high levels of IL-10 which significantly up-regulated collagen type II expression. TNF-alpha suppressed collagen type II and aggrecan, but increased MMP and cytokine expression in chondrocytes compared to the non-stimulated controls. The TNF-alpha mediated down-regulation of aggrecan expression was significantly antagonized by IL-10 overexpression, whereas the suppression of collagen type II was barely affected. The MMP-13 and IL-1beta expression by TNF-alpha was slightly reduced by IL-10. These results suggest that IL-10 overexpression modulates some catabolic features of TNF-alpha in chondrocytes.

PMID:
19026560
DOI:
10.1016/j.cyto.2008.10.012
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center