Send to

Choose Destination
J Bacteriol. 1991 May;173(9):2977-84.

Control of transcription of the Bacillus subtilis spoIIIG gene, which codes for the forespore-specific transcription factor sigma G.

Author information

Department of Biochemistry, University of Connecticut Health Center, Farmington 06032.


The Bacillus subtilis spoIIIG gene codes for a sigma factor termed sigma G which directs transcription of genes expressed only in the forespore compartment of the sporulating cell. Use of spoIIIG-lacZ transcriptional fusions showed that spoIIIG is cotranscribed with the spoIIG operon beginning at t0.5-1 of sporulation. However, this large mRNA produced little if any sigma G, and transferring the spoIIIG gene without the spoIIG promoter into the amyE locus resulted in a Spo+ phenotype. Significant translation of spoIIIG began at t2.5-3 with use of an mRNA whose 5' end is just upstream of the spoIIIG coding sequence. Synthesis of this spoIIIG-specific mRNA was not abolished by a deletion in spoIIIG itself. Similar results were obtained when a spoIIIG-lacZ translational fusion lacking the spoIIG promoter was integrated at the amyE locus. These data suggest that synthesis of sigma G is dependent neither on transcription from the spoIIG promoter nor on sigma G itself but can be due to another transcription factor. This transcription factor may be sigma F, the product of the spoIIAC locus, since a spoIIAC mutation blocked spoIIIG expression, and sequences upstream of the 5' end of the spoIIIG-specific mRNA agree well with the recognition sequence for sigma F. RNA polymerase containing sigma F (E sigma F) initiated transcription in vitro on a spoIIIG template at the 5' end found in vivo, as did E sigma G. However, E sigma F showed a greater than 20-fold preference for spoIIIG over a known sigma G-dependent gene compared with the activity of E sigma G.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center