Send to

Choose Destination
See comment in PubMed Commons below
Methods Enzymol. 2008;445:141-76. doi: 10.1016/S0076-6879(08)03007-3.

Chapter 7. Molecular imaging of tumor vasculature.

Author information

  • 1Stanford University School of Medicine, Stanford, California, USA.


Cancer, with more than 10 million new cases a year worldwide, is the third leading cause of death in developed countries. One critical requirement during cancer progression is angiogenesis, the formation of new blood vessels. Structural and functional imaging of tumor vasculature has been studied using various imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound. Molecular imaging, a key component of the 21st-century cancer-patient management strategy, takes advantage of these traditional imaging techniques and introduces molecular probes to determine the expression of indicative molecular markers at different stages of cancer development. In this chapter, we will focus on two tumor vasculature-related targets: integrin alpha(v)beta(3) and vascular endothelial growth factor receptor (VEGFR). For imaging of integrin alpha(v)beta(3) on the tumor vasculature, only nanoparticle-based probes will be discussed. VEGFR imaging will be discussed in depth, and we will give a detailed example of positron emission tomography (PET) imaging of VEGFR expression using radio-labeled VEGF(121) protein. Future clinical translation will be critical for maximum patient benefit from these agents. To achieve this goal, multidisciplinary approaches and cooperative efforts from many individuals, institutions, industries, and organizations are needed to quickly translate multimodality tumor vasculature imaging into multiple facets of cancer patient management.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center