Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mater Sci Mater Med. 2009 Mar;20(3):821-31. doi: 10.1007/s10856-008-3637-5. Epub 2008 Nov 20.

Novel self-assembled amphiphilic poly(epsilon-caprolactone)-grafted-poly(vinyl alcohol) nanoparticles: hydrophobic and hydrophilic drugs carrier nanoparticles.

Author information

1
Department of Bionano System Engineering, Chonbuk National University, Jeonju, 561-756, Republic of Korea.

Abstract

In the present study, we have aimed to produce nanoparticles (NPs) possessing the capability of carrying both of the hydrophobic and hydrophilic drugs and reveal significant release for both drug types. Poly(epsilon-caprolactone) (PCL) grafted poly(vinyl alcohol) (PVA) copolymer (PCL-g-PVA) has been prepared and shaped in nano-particulate form to be adequate for carrying the drugs. Stannous octoate (Sn(II)Oct(2)) was used to catalyze PVA and epsilon-caprolactone monomer to chemically bond. Moreover, this catalyst enhanced side chain polymerization reaction for the utilized epsilon-caprolactone monomer to form poly(epsilon-caprolactone) (PCL). The formed PCL was attached as branches with PVA backbone. (1)H NMR has confirmed formation of PCL and grafting of PVA by this new polymer. Moreover, the vibration modes in the functional groups of PCL-g-PVA have been detected by FT-IR. The thermal alteration in the grafted polymer was checked by TGA analysis. The successfully synthesized grafted copolymer was able to self-aggregate into NPs by direct dialysis method. The size, morphology and charges associated with the obtained NPs were analyzed by DLS, TEM and ELS, respectively. PCL-g-PVA NPs were investigated as drug carrier models for hydrophobic and hydrophilic anti cancer drugs; paclitaxel and doxorubicin. In vitro drug release experiments were conducted; the loaded NPs reveal continuous and sustained release form for both drugs, up to 20 and 15 days for paclitaxel and doxorubicin, respectively. However, in a case of using pure drugs only, both drugs completely released within 1-2 h. The overall obtained results strongly recommend the use these novel NPs in future drug delivery systems.

PMID:
19020953
DOI:
10.1007/s10856-008-3637-5
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center