Format

Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 1991 Jan 25;19(2):365-70.

Sequence effect on incision by (A)BC excinuclease of 4NQO adducts and UV photoproducts.

Author information

1
Department of Biochemistry, University of North Carolina School of Medicine, Chapel Hill 27599.

Abstract

Nucleotide excision repair in Escherichia coli is initiated by (A)BC excinuclease, an enzyme which incises DNA on both sides of bulky adducts and removes the damaged nucleotide as a 12-13 base long oligomer. The incision pattern of the enzyme was examined using DNA modified by 4-nitroquinoline 1-oxide (4NQO) and UV light. Similar to the cleavage pattern of UV photoproducts and other bulky adducts, the enzyme incises the 8th phosphodiester bond 5' and 5th phosphodiester bond 3' to the 4NQO-modifed base, primarily guanine. The extent of DNA damage by these agents was determined using techniques which quantitatively cleave the DNA or stop at the site of the adduct. By comparison of the intensity of gel bands created by (A)BC excinuclease and the specific cleavage at the damaged site, the efficiency of (A)BC excinuclease incision at 13 different 4NQO-induced adducts and 13 different photoproducts was determined by densitometric scanning. In general, incisions made at 4NQO-induced adducts are proportional to the extent of damage, though the efficiency of cutting throughout the sequence tested varies from 25 to 75%. Incisions made at pyrimidine dimers are less efficient than at 4NQO-adducts, ranging from 13 to 65% incision relative to modification, though most are around 50%. The two (6-4) photoproducts within the region tested are incised more efficiently than any pyrimidine dimer.

PMID:
1901645
PMCID:
PMC333603
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center