Send to

Choose Destination
Am J Respir Cell Mol Biol. 2009 Jun;40(6):746-50. doi: 10.1165/rcmb.2008-0289OC. Epub 2008 Nov 14.

Abnormal transition pore kinetics and cytochrome C release in muscle mitochondria of patients with chronic obstructive pulmonary disease.

Author information

Servicio de Neumología, Hospital General Universitario Gregorio Marañón, Madrid, Spain.


Skeletal muscle dysfunction (SMD) is frequent in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial abnormalities appear to play a role in the pathogenesis of SMD. The mitochondrion permeability transition pore (MPTP) facilitates the leakage of mitochondrial matrix constituents, such as cytochrome c (cyto-c), and triggers apoptosis, known to occur in skeletal muscle of patients with COPD. Our objective was to study MPTP kinetics and cyto-c release in skeletal muscle mitochondria of patients with COPD. Mitochondria were isolated from the vastus lateralis (VL), external intercostalis (EI), and latissimus dorsi (LD) in 11 patients with COPD (66 +/- 9 yr; FEV(1) 66 +/- 13%) and 15 smokers with normal lung function (64 +/- 6 yr; FEV(1) 95 +/- 11%) who required thoracic surgery for a localized lung neoplasm. MPTP kinetics were determined spectrophotometrically (time to reach V'max, V'max and mitochondrial swelling) and cyto-c release by enzyme-linked immunosorbent assay. MPTP kinetics and cyto-c release were abnormal in patients with COPD in the three muscles studied. In addition, V'max of VL mitochondria was significantly related (P < 0.01) to BMI (r = -0.75 COPD, -0.67 control) and aerobic capacity (r = -0.70 COPD, -0.60 control) for the COPD group. MPTP kinetics and cyto-c release are abnormal in skeletal and respiratory muscles of patients with moderate COPD, suggesting a systemic mechanism(s) occurring early during the course of the disease.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center