Format

Send to

Choose Destination
See comment in PubMed Commons below
Toxicol Appl Pharmacol. 1991 Mar 15;108(1):14-27.

Physiologically based pharmacokinetic modeling with dichloromethane, its metabolite, carbon monoxide, and blood carboxyhemoglobin in rats and humans.

Author information

  • 1Toxic Hazards Division, Armstrong Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-6573.

Abstract

Dichloromethane (methylene chloride, DCM) and other dihalomethanes are metabolized to carbon monoxide (CO) which reversibly binds hemoglobin and is eliminated by exhalation. We have developed a physiologically based pharmacokinetic (PB-PK) model which describes the kinetics of CO, carboxyhemoglobin (HbCO), and parent dihalomethane, and have applied this model to examine the inhalation kinetics of CO and of DCM in rats and humans. The portion of the model describing CO and HbCO kinetics was adapted from the Coburn-Forster-Kane equation, after modification to include production of CO by DCM oxidation. DCM kinetics and metabolism were described by a generic PB-PK model for volatile chemicals (RAMSEY AND ANDERSEN, Toxicol. Appl. Pharmacol. 73, 159-175, 1984). Physiological and biochemical constants for CO were first estimated by exposing rats to 200 ppm CO for 2 hr and examining the time course of HbCO after cessation of CO exposure. These CO inhalation studies provided estimates of CO diffusing capacity under free breathing and for the Haldane coefficient, the relative equilibrium distribution ratio for hemoglobin between CO and O2. The CO model was then coupled to a PB-PK model for DCM to predict HbCO time course behavior during and after DCM exposures in rats. By coupling the models it was possible to estimate the yield of CO from oxidation of DCM. In rats only about 0.7 mol of CO are produced from 1 mol of DCM during oxidation. The combined model adequately represented HbCO and DCM behavior following 4-hr exposures to 200 or 1000 ppm DCM, and HbCO behavior following 1/2-hr exposure to 5160 ppm DCM or 5000 ppm bromochloromethane. The rat PB-PK model was scaled to predict DCM, HbCO, and CO kinetics in humans exposed either to DCM or to CO. Three human data sets from the literature were examined: (1) inhalation of CO at 50, 100, 250, and 500 ppm; (2) seven 1/2-hr inhalation exposures to 50, 100, 250, and 500 ppm DCM; and (3) 2-hr inhalation exposures to 986 ppm DCM. An additional data set from human volunteers exposed to 100 or 350 ppm DCM for 6 hr is reported here for the first time. Endogenous CO production rates and the initial amount of CO in the blood compartment were varied in each study as necessary to give the baseline HbCO value, which varied from less than 0.5% to greater than 2% HbCO. The combined PB-PK model gave a good representation of the observed behavior in all four human studies.(ABSTRACT TRUNCATED AT 400 WORDS)

PMID:
1900959
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center