Format

Send to

Choose Destination
PLoS Comput Biol. 2008 Nov;4(11):e1000219. doi: 10.1371/journal.pcbi.1000219. Epub 2008 Nov 14.

A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons.

Author information

1
Department of Physics, Florida Atlantic University, Boca Raton, Florida, United States of America.

Abstract

Neural networks consisting of globally coupled excitatory and inhibitory nonidentical neurons may exhibit a complex dynamic behavior including synchronization, multiclustered solutions in phase space, and oscillator death. We investigate the conditions under which these behaviors occur in a multidimensional parametric space defined by the connectivity strengths and dispersion of the neuronal membrane excitability. Using mode decomposition techniques, we further derive analytically a low dimensional description of the neural population dynamics and show that the various dynamic behaviors of the entire network can be well reproduced by this reduced system. Examples of networks of FitzHugh-Nagumo and Hindmarsh-Rose neurons are discussed in detail.

PMID:
19008942
PMCID:
PMC2574034
DOI:
10.1371/journal.pcbi.1000219
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center