Format

Send to

Choose Destination
Oncogene. 2009 Jan 29;28(4):509-17. doi: 10.1038/onc.2008.407. Epub 2008 Nov 10.

PTEN deficiency accelerates tumour progression in a mouse model of thyroid cancer.

Author information

1
Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.

Abstract

Inactivation and silencing of PTEN have been observed in multiple cancers, including follicular thyroid carcinoma. PTEN (phosphatase and tensin homologue deleted from chromosome 10) functions as a tumour suppressor by opposing the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling pathway. Despite correlative data, how deregulated PTEN signalling leads to thyroid carcinogenesis is not known. Mice harbouring a dominant-negative mutant thyroid hormone receptor beta (TRbeta(PV/PV) mice) spontaneously develop follicular thyroid carcinoma and distant metastases similar to human cancer. To elucidate the role of PTEN in thyroid carcinogenesis, we generated TRbeta(PV/PV) mice haploinsufficient for Pten (TRbeta(PV/PV)Pten(+/-) mouse). PTEN deficiency accelerated the progression of thyroid tumour and increased the occurrence of metastasis spread to the lung in TRbeta(PV/PV)Pten(+/-) mice, thereby significantly reducing their survival as compared with TRbeta(PV/PV)Pten(+/+) mice. AKT activation was further increased by two-fold in TRbeta(PV/PV)Pten(+/-) mice thyroids, leading to increased activity of the downstream mammalian target of rapamycin (mTOR)-p70S6K signalling and decreased activity of the forkhead family member FOXO3a. Consistently, cyclin D1 expression was increased. Apoptosis was decreased as indicated by increased expression of nuclear factor-kappaB (NF-kappaB) and decreased caspase-3 activity in the thyroids of TRbeta(PV/PV)Pten(+/-) mice. Our results indicate that PTEN deficiency resulted in increased cell proliferation and survival in the thyroids of TRbeta(PV/PV)Pten(+/-) mice. Altogether, our study provides direct evidence to indicate that in vivo, PTEN is a critical regulator in the follicular thyroid cancer progression and invasiveness.

PMID:
18997818
PMCID:
PMC3457778
DOI:
10.1038/onc.2008.407
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center