Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1991 Jan 25;266(3):1646-51.

Identification of distinct endoglycosidase (endo) activities in Flavobacterium meningosepticum: endo F1, endo F2, and endo F3. Endo F1 and endo H hydrolyze only high mannose and hybrid glycans.

Author information

1
Division of Clinical Sciences, New York State Department of Health, Albany 12201-0509.

Abstract

Flavobacterium meningosepticum endo-beta-acetyl-glucosaminidase F preparations have been resolved by hydrophobic interaction chromatography on TSK-butyl resin into at least three activities designated endo F1, endo F2 and endo F3 each with a unique substrate specificity. The 32-kDa endo F1 protein is the principle component representing in excess of 95% of most earlier and currently available commercial endoglycosidase preparations, the remainder being a mixture of five proteins from 32 to 43 kDa. Substrate specificity studies reveal endo F1 and endo H from Streptomyces plicatus to have nearly identical capacities to hydrolyze high-mannose oligosaccharides with a minimum Man1 alpha 3Man1 alpha 6Man1 beta 4GlcNAc1 beta 4GlcNAc structure. Although endo H will hydrolyze fucose-containing hybrid oligosaccharides at rates approaching comparable high-mannose forms, core-linked fucose reduces the hydrolysis rate of endo F1 by over 50-fold relative to high-mannose structures. Neither homogeneous endo F1 nor endo H hydrolyze complex multi-antennary glycans. The biantennary cleaving activity previously reported for endo F preparations (Tarentino, A. L., Gómez, C. M., and Plummer, T. H., Jr. (1985) Biochemistry 24, 4665-4671) is a characteristic of the contaminating endo F2 activity.

PMID:
1899092
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center