The flow structure of a puff

Philos Trans A Math Phys Eng Sci. 2009 Feb 13;367(1888):489-507. doi: 10.1098/rsta.2008.0227.

Abstract

From time-resolved stereoscopic particle image velocimetry measurements over the entire circular cross section of a pipe, a first-of-its-kind quasi-instantaneous three-dimensional velocity field of a turbulent puff at a low Reynolds number is reconstructed. At the trailing edge of the puff, where the laminar flow undergoes transition to turbulence, pairs of counterrotating streamwise vortices are observed that form the legs of large hairpin vortices. At the upstream end of the puff, a quasi-periodic regeneration of streamwise vortices takes place. Initially, the vortex structure resembles a travelling wave solution, but as the vortices propagate into the turbulent region of the puff, they continue to develop into strong hairpin vortices. These hairpin vortices extract so much energy from the mean flow that they cannot be sustained. This structure provides a possible explanation for the intermittent character of the puffs in pipe flow at low Reynolds numbers.