Send to

Choose Destination
Appl Microbiol Biotechnol. 2009 Feb;82(1):115-21. doi: 10.1007/s00253-008-1751-4. Epub 2008 Nov 7.

Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase.

Author information

Department of Molecular Science and Material Engineering, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan.


Here, we demonstrated the one-step production of cadaverine from starch using a Corynebacterium glutamicum strain coexpressing Streptococcus bovis 148 alpha-amylase (AmyA) and Escherichia coli K-12 lysine decarboxylase (CadA). We constructed the E. coli-C. glutamicum shuttle vector, which produces CadA under the control of the high constitutive expression (HCE) promoter, and transformed this vector into C. glutamicum CSS secreting AmyA. The engineered C. glutamicum expressed both CadA and AmyA, which retained their activity. We performed cadaverine fermentation using 50 g/l soluble starch as the sole carbon source without pyridoxal-5'-phosphate, which is the coenzyme for CadA. C. glutamicum coexpressing AmyA and CadA successfully produced cadaverine from soluble starch and the yield of cadaverine was 23.4 mM after 21 h. CadA expression levels under the control of the HCE promoter were assumed to be sufficient to convert L-lysine to cadaverine, as there was no accumulation of L-lysine in the culture medium during fermentation. Thus, we demonstrated that C. glutamicum has great potential to produce cadaverine from biomass resources.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center