Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17373-8. doi: 10.1073/pnas.0809769105. Epub 2008 Nov 6.

Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels.

Author information

1
Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan.

Abstract

Caffeine has various well-characterized pharmacological effects, but in mammals there are no known plasma membrane receptors or ion channels activated by caffeine. We observed that caffeine activates mouse transient receptor potential A1 (TRPA1) in heterologous expression systems by Ca(2+)(i) imaging and electrophysiological analyses. These responses to caffeine were confirmed in acutely dissociated dorsal root ganglion sensory neurons from WT mice, which are known to express TRPA1, but were not seen in neurons from TRPA1 KO mice. Expression of TRPA1 was detected immunohistochemically in nerve fibers and bundles in the mouse tongue. Moreover, WT mice, but not KO mice, showed a remarkable aversion to caffeine-containing water. These results demonstrate that mouse TRPA1 channels expressed in sensory neurons cause an aversion to drinking caffeine-containing water, suggesting they mediate the perception of caffeine. Finally, we observed that caffeine does not activate human TRPA1; instead, it suppresses its activity.

PMID:
18988737
PMCID:
PMC2582301
DOI:
10.1073/pnas.0809769105
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center