Send to

Choose Destination
See comment in PubMed Commons below
J Cell Physiol. 2009 Mar;218(3):501-11. doi: 10.1002/jcp.21620.

Glycosaminoglycan composition changes with MG-63 osteosarcoma osteogenesis in vitro and induces human mesenchymal stem cell aggregation.

Author information

Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore.


Osteogenic differentiation is coordinated by the exposure of cells to temporal changes in a combination of growth factors and elements within the extracellular matrix (ECM). Many of the key proteins that drive these changes share the property of being dependent on ECM glycosaminoglycans (GAGs) for their activity. Here, we examined whether GAGs isolated from proliferating, differentiating and mineralizing MG-63 osteosarcoma cells differed in their physical properties, and thus in their capacities to coordinate the osteogenic cascade both in human MG-63 osteosarcoma cells and primary human mesenchymal stem cells (hMSCs). Our results show that the size distribution of GAGs, the expression of GAG-carrying proteoglycan cores and the expression of enzymes involved in their modification systematically change as MG-63 cells mature in culture. When dosed back onto cells exogenously in soluble form, GAGs regulated MG-63 survival and growth in a dose-dependent manner, but not differentiation in either cell type. In contrast, hMSCs aggregated into distinct colonies when grown on GAG-coated substrates, while MG-63 cells did not. Heparin-coated substrates improved hMSC viability without inducing aggregation. These results suggest a complex role for GAGs in coordinating the emergence of the osteoblast phenotype, and provide further evidence for the use of heparans in bone tissue repair applications.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center