Send to

Choose Destination
See comment in PubMed Commons below
Res Microbiol. 2008 Nov-Dec;159(9-10):609-27. doi: 10.1016/j.resmic.2008.09.007. Epub 2008 Oct 14.

Prokaryotic community profiles at different operational stages of a Greek solar saltern.

Author information

Department of Environmental and Natural Resources Management, University of Ioannina, 2 Seferi Street, 30100 Agrinio, Greece.


A combination of culture-dependent and independent approaches was employed to identify the microbial community structure in a Greek solar saltern. A total of 219 and 132 isolates belonging, respectively, to Bacteria and Archaea, were recovered. All bacterial isolates were phylogenetically related to 43 members of Actinobacteria, Firmicutes and gamma-Proteobacteria. The archaeal isolates were placed within the Halobacteriaceae. At least four groups of isolates represented novel species among the Bacteria. High bacterial diversity, consisting of 417 subfamilies, was revealed using a high-density oligonucleotide microarray (PhyloChip). At the four stages of saltern operation analyzed, the archaeal community consisted of both Crenarchaeota and Euryarchaeota, except for the sediment where Crenarchaeota were not detected. The bacterial community in sediment consisted mainly of gamma-Proteobacteria and Actinobacteria, while, in hypersaline water, it was restricted to a few representatives of Bacteria. Members of alpha-Proteobacteria were the main constituents in saturated brine and crude salt, followed by gamma-Proteobacteria, Actinobacteria and Firmicutes. A large Bacteroidetes and Verrucomicrobia diversity was identified in saturated brine, while delta-Proteobacteria and Cloroflexi were abundant in crude salt. Significant changes in the microbial community structure were detected during a short time period, denoting a rapidly adaptive dynamic ecosystem and viable diversity. Prokaryotic members reported for the first time in solar salterns were identified.

[Indexed for MEDLINE]

Publication type, MeSH terms, Substances, Secondary source ID

Publication type

MeSH terms


Secondary source ID

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center