Format

Send to

Choose Destination
Antioxid Redox Signal. 2009 Feb;11(2):241-9. doi: 10.1089/ars.2008.2140.

Curcumin supplementation lowers TNF-alpha, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-alpha, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats.

Author information

1
Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA. sjain@lsuhsc.edu

Abstract

This study examined the hypothesis that curcumin supplementation decreases blood levels of IL-6, MCP-1, TNF-alpha, hyperglycemia, and oxidative stress by using a cell-culture model and a diabetic rat model. U937 monocytes were cultured with control (7 mM) and high glucose (35 mM) in the absence or presence of curcumin (0.01-1 microM) at 37 degrees C for 24 h. Diabetes was induced in Sprague-Dawley rats by injection of streptozotocin (STZ) (i.p., 65 mg/kg BW). Control buffer, olive oil, or curcumin (100 mg/kg BW) supplementation was administered by gavage daily for 7 weeks. Blood was collected by heart puncture with light anesthesia. Results show that the effect of high glucose on lipid peroxidation, IL-6, IL-8, MCP-1, and TNF-alpha secretion was inhibited by curcumin in cultured monocytes. In the rat model, diabetes caused a significant increase in blood levels of IL-6, MCP-1, TNF-alpha, glucose, HbA(1), and oxidative stress, which was significantly decreased in curcumin-supplemented rats. Thus, curcumin can decrease markers of vascular inflammation and oxidative stress levels in both a cell-culture model and in the blood of diabetic rats. This suggests that curcumin supplementation can reduce glycemia and the risk of vascular inflammation in diabetes.

PMID:
18976114
PMCID:
PMC2933148
DOI:
10.1089/ars.2008.2140
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center