Format

Send to

Choose Destination
Bioinformatics. 2008 Dec 15;24(24):2901-7. doi: 10.1093/bioinformatics/btn562. Epub 2008 Oct 30.

Reconstruction of transcriptional dynamics from gene reporter data using differential equations.

Author information

1
Department of Statistics, University of Warwick, Coventry CV47AL, UK. b.f.finkenstadt@warwick.ac.uk

Abstract

MOTIVATION:

Promoter-driven reporter genes, notably luciferase and green fluorescent protein, provide a tool for the generation of a vast array of time-course data sets from living cells and organisms. The aim of this study is to introduce a modeling framework based on stochastic differential equations (SDEs) and ordinary differential equations (ODEs) that addresses the problem of reconstructing transcription time-course profiles and associated degradation rates. The dynamical model is embedded into a Bayesian framework and inference is performed using Markov chain Monte Carlo algorithms.

RESULTS:

We present three case studies where the methodology is used to reconstruct unobserved transcription profiles and to estimate associated degradation rates. We discuss advantages and limits of fitting either SDEs ODEs and address the problem of parameter identifiability when model variables are unobserved. We also suggest functional forms, such as on/off switches and stimulus response functions to model transcriptional dynamics and present results of fitting these to experimental data.

PMID:
18974172
PMCID:
PMC2639297
DOI:
10.1093/bioinformatics/btn562
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center