Send to

Choose Destination
Water Sci Technol. 2008;58(7):1433-9. doi: 10.2166/wst.2008.514.

Methanogens in biogas production from renewable resources--a novel molecular population analysis approach.

Author information

Bavarian State Research Center for Agriculture, Institute for Agricultural Engineering and Animal Husbandry, Vöttinger Str. 36, 85354 Freising, Germany.


The population structure of thermo- and mesophilic biogas reactors digesting maize silage as the sole substrate was investigated employing a novel, highly degenerated PCR-primer pair targeting mcrA/mrtA coding for the key enzyme of methanogens. No sequence affiliating with Methanococcales, Methanopyrales, ANME-, rice or fen soil clusters was detected. Direct MeA PCR-cloning results indicated that Methanobacteriales were the most important methanogens in the thermophilic reactors. 57% and 80% of the analysed sequences affiliated with this order, 14% and 20% with Methanosarcinaceae and 0% and 29% with Methanomicrobiales. Methanomicrobiales dominated in the mesophilic reactors at the given conditions, 69% and 84% of the sequences recovered from direct MeA primed cloning affiliated with this order, 31% and 0% with Methanosarcinaceae and 0% and 16% with Methanobacteriales. No sequence affiliating with Methanosaetaceae was found. MeA primed PCR-single-strand conformation polymorphism indicated that population fluctuations occurred. According to sequence analysis of excised bands, Methanosarcinaceae dominated and Methanobacteriales were significantly represented in the thermophilic fermenter. Only 1 Methanosaetaceae sequence was found. Hydrogenotrophs appear to have a much higher and obligate acetoclastic methanogens a much lower importance than previously thought in biogas production from renewable resources.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center