Send to

Choose Destination
See comment in PubMed Commons below
Dev Comp Immunol. 2009 Apr;33(4):464-80. doi: 10.1016/j.dci.2008.09.010. Epub 2008 Oct 23.

Porcine DC-SIGN: molecular cloning, gene structure, tissue distribution and binding characteristics.

Author information

Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Price's Fork Road, Blacksburg, VA 24061-0342, USA.


DC-SIGN, a human C-type lectin, is involved in the transmission of many enveloped viruses. Here we report the cloning and characterization of the cDNA and gene encoding porcine DC-SIGN (pDC-SIGN). The full-length pDC-SIGN cDNA encodes a type II transmembrane protein of 240 amino acids. Phylogenetic analysis revealed that pDC-SIGN, together with bovine, canis and equine DC-SIGN, are more closely related to mouse SIGNR7 and SIGNR8 than to human DC-SIGN. pDC-SIGN has the same gene structure as bovine, canis DC-SIGN and mouse SIGNR8 with eight exons. pDC-SIGN mRNA expression was detected in pig spleen, thymus, lymph node, lung, bone marrow and muscles. pDC-SIGN protein was found to express on the surface of monocyte-derived macrophages and dendritic cells, alveolar macrophages, lymph node sinusoidal macrophage-like, dendritic-like and endothelial cells but not of monocytes, peripheral blood lymphocytes or lymph node lymphocytes. A BHK cell line stably expressing pDC-SIGN binds to human ICAM-3 and ICAM-2 immunoadhesins in a calcium-dependent manner, and enhances the transmission of porcine reproductive and respiratory syndrome virus (PRRSV) to target cells in trans. The results will help better understand the biological role(s) of DC-SIGN family in innate immunity during the evolutionary process.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center