Send to

Choose Destination
See comment in PubMed Commons below
Phytopathology. 2003 Apr;93(4):428-35. doi: 10.1094/PHYTO.2003.93.4.428.

Risk assessment models for wheat fusarium head blight epidemics based on within-season weather data.


ABSTRACT Logistic regression models for wheat Fusarium head blight were developed using information collected at 50 location-years, including four states, representing three different U.S. wheat-production regions. Non-parametric correlation analysis and stepwise logistic regression analysis identified combinations of temperature, relative humidity, and rainfall or durations of specified weather conditions, for 7 days prior to anthesis, and 10 days beginning at crop anthesis, as potential predictor variables. Prediction accuracy of developed logistic regression models ranged from 62 to 85%. Models suitable for application as a disease warning system were identified based on model prediction accuracy, sensitivity, specificity, and availability of weather variables at crop anthesis. Four of the identified models correctly classified 84% of the 50 location-years. A fifth model that used only pre-anthesis weather conditions correctly classified 70% of the location-years. The most useful predictor variables were the duration (h) of precipitation 7 days prior to anthesis, duration (h) that temperature was between 15 and 30 degrees C 7 days prior to anthesis, and the duration (h) that temperature was between 15 and 30 degrees C and relative humidity was greater than or equal to 90%. When model performance was evaluated with an independent validation set (n = 9), prediction accuracy was only 6% lower than the accuracy for the original data sets. These results indicate that narrow time periods around crop anthesis can be used to predict Fusarium head blight epidemics.

Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk